If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+25w+6=0
a = 4; b = 25; c = +6;
Δ = b2-4ac
Δ = 252-4·4·6
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-23}{2*4}=\frac{-48}{8} =-6 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+23}{2*4}=\frac{-2}{8} =-1/4 $
| 2.7(9.1r-4.2)=12.6 | | x+5x=x-35 | | 2952=36(p+40) | | 25b=-3 | | 11x+4=10x+1 | | 0.0025=1/x | | 11x^2+12x-324=0 | | c+83=83-c | | 2x−3=4x−4 | | 172=101-u | | -v+258=73 | | c-83=83+c | | -2x-5=4x+4 | | (2x-1)/5=(x-4)/2 | | 2c-1=14-c | | -3(7x-5)=27 | | -15x-21+5x=19 | | 3a+a+15=225 | | (343)^x=(49)^4-x | | 8/x=0.5/0.9 | | 0.15=y-0.450. | | -3+|n|=1 | | 3z+2=34 | | (7y+40)+y=140 | | 12x+17x-8=-5x+1-9 | | 6-3w=-6 | | .5^(x/5715)x27.5=19.9 | | 29x-10=-5x-8 | | 9x–6=4x+14 | | 1500-5x=2000-7x | | 6x-4/8x=12 | | 3x+15=15-5x |